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Abstract. In the paper we discuss the periodic orbits of maps connected with the
boundary logistic map. In consequence some new kind of the modified Chebyshev
polynomials is defined and intensively studied. Many fundamental relations for these
polynomials are presented and discussed. Concepts of the Chebyshev functions of any
real order are also introduced and compared with other parallel concepts.
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Organization of the paper

The paper is divided into three main sections completed by references and three
tables. The sections are:

1. Introduction – where besides the ideas and notations used in the paper also the
investigated polynomials are introduced. Background of the paper subject-matter
is presented as well.

2. Boundary logistic map (with coefficient 4) – in this section the periodic orbits
of two classes of maps

gw(x) =
1

w
x (4w − x), and hw(x) =

1

w
(2w − x)2
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are discussed. In the sequel we prove that both gw and hw possess 3-periodic orbits
for every w ∈ C, w 6= 0, which implies that gw and hw are chaotic in the Li-Yorke
sense.

3. New types of modified Chebyshev polynomials – in this section on the
grounds of discussion on the periodic orbits of polynomials gw and hw the new
modified Chebyshev polynomials (perhaps the name “Chebyshev polynomials of
the fifth kind” would be the most appropriate here) are defined

Wn(c
2(x)) := c2(nx) = 4T 2

n

(c(x)

2

)

and

Vn(s
2(x)) := s2(nx) = s2(x)U2

n−1

(c(x)

2

)

,

for every n ∈ N, where c(x) := 2 cos(x), s(x) := 2 sin(x), Tn(x) and Un(x) denote
the n-th Chebyshev polynomials of the first and second kind, respectively (see
[17, 21, 22, 29] for fundamental information about the Chebyshev polynomials).
A number of basic properties of these polynomials are also presented, including
the recurrence relations for Wn and Vn. Moreover, in Remark 3.2 we discuss some
analytical generalizations of the Chebyshev polynomials which we intend to use
for further investigations in a separate paper. The paper constitutes an essential
supplement for discussion started by the authors in papers [23, 24, 31].

1. Introduction

In the paper we intend to discuss the periodic orbits of boundary logistic map. Main
rôle in discussion will be played by the following polynomials (see [30, 33, 35, 37]):

p(X) = X
3 − 3X+ 1 =

2
∏

k=0

(

X− c(2kβ)
)

,

q(X) = X
3 + X

2 − 2X− 1 =

2
∏

k=0

(

X− c(2kα)
)

,

pc2(X) := p(X− 2) = X
3 − 6X2 + 9X− 1 =

2
∏

k=0

(

X− c2(2kβ)
)

,

ps2(X) := −p(2− X) = X
3 − 6X2 + 9X− 3 =

2
∏

k=0

(

X− s2(2kβ)
)

,

qc2(X) := q(X− 2) = X
3 − 5X2 + 6X− 1 =

2
∏

k=0

(

X− c2(2kα)
)

,

qs2(X) := −q(2− X) = X
3 − 7X2 + 14X− 7 =

2
∏

k=0

(

X− s2(2kα)
)

.
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where α := 2π
7 , β := 2π

9 . Furthermore γ := 2π
11 , δ := 2π

13 , ε :=
2π
15 and

c(x) := 2 cos(x) and s(x) := 2 sin(x).

The above notation will be applied throughout the entire paper. In this connection
we obtain the following form of the known trigonometric identities

c(2 x) = c2(x)− 2 = 2− s2(x),

s(2 x) = s(x) c(x),

s(x)

N−1
∏

k=0

c(2kx) = s(2Nx).

We also use the notation
−A := {−a : a ∈ A}

for every nonempty A ⊂ R.
Certainly, the problem of analytic description of such orbits in specific cases is

still interesting for us. It turned out that there exist several particular quadratic and
cubic polynomials, in case of which the analysis of their orbits is especially interesting
because it is connected, among others, with determination of some new sequences
of integers (associated with the length of appropriate orbits of given polynomials)
and new sequences of “modified” Chebyshev polynomials possessing the intriguing
properties. It seems that the obtained results are worth to be popularized for the
sake of their accessibility and creativity. This paper is a substantial suplement of
paper [32].

We say that n-periodic real orbit {x1, x2, . . . , xn} of polynomial p ∈ R[x] possesses
the trigonometric form if there exist α1, α2, . . . , αn ∈ [0, 2π) such that xi = c(αi)
for every i = 1, 2, . . . , n. In particular, if there exist α ∈ (0, 2π) and k ∈ N such
that xi = c2(ki α) or xi = s2(ki α), respectively, for every i = 1, 2, . . . , n, then orbit
{x1, x2, . . . , xn} will be called the n-periodic square trigonometric orbit.

Remark 1.1. All the above four decompositions can be deduced from respective
connections with p(X) and q(X) (see also [29, 30]).

Remark 1.2. Polynomial qs2(X) is called the Johannes Kepler polynomial (see [29]
volume III). We have X qs2(X) = 2T7(X/2) where T7(X) is the seventh Chebyshev
polynomial of the first kind.

Remark 1.3. Let us also notice the unusual similarity between forms of coefficients
of polynomial qs2(X) and the following one

X
3 − 7X2 + 7X+ 7 =

2
∏

k=0

(

X−
√
7 cot(2kα)

)

=

=

2
∏

k=0

(

X− 3− 2 c(2kα)
)

.

Sums of the powers of roots of the above polynomial is described by sequence A215575
in Sloane’s OEIS.
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One more polynomial “similar” to polynomial qs2(X) will appear in this paper. On
the occasion of discussing the 4-elements orbits rescaling the limit logistic polynomial
gw(x) we will deal with polynomial (see [29] volume I):

X
4 − 7X3 + 14X2 − 8X+ 1 =

3
∏

k=0

(

X− s2
(

2k
π

15

))

=

=
∏

16k,l62

(

X− 1

4
(7 + (−1)k

√
5 + (−1)k+l

√

30 + (−1)k6
√
5)
)

.

Remark 1.4. In paper [9] the authors have proven that a real analytic function,

whose Maclaurin series expansion has the form
∞
∑

n=0
anx

n, behaves chaotically when-

ever the following condition holds

a22 − a1a3 > 0. (1)

It can be easily observed that all the polynomials presented in this section, and
simultaneously the all ones discussed in this paper, satisfy condition (1), i.e. they
are chaotic.

2. Boundary logistic map (with coefficient 4)

Maps, discussed in this section (functions gw and hw defined in theorem given
below), have a close connection with the boundary logistic map x 7→ 4 x(1 − x) [7].
Let us notice that if we replace coefficient 4 by number a > 4 then the obtained
logistic map is chaotic [11]. Furthermore, this boundary logistic map has no attracting
periodic points.

In the following theorem we present all the n−periodic orbits of functions gw and
hw for n = 1, 2,3, 4, 5, 6. We note that since both functions gw and hw possess the 3-
periodic orbits, these functions possess also the n−periodic orbits for every n ∈ N (by
Sharkovsky’s Theorem). Unfortunately, we do not know the description of all these
orbits for other n ∈ N. We only suppose that for every positive integer n ≥ 7 both gw
and hw possess exclusively the n−periodic square trigonometric orbits of the form

{s2(2kx) : k = 0, 1, ..., n− 1},

where x = x(n) is a rational number (probably x = r
2n±1 , (r, 2

n ± 1) = 1), and

{c2(2ky) : k = 0, 1, ..., n− 1},

where y = y(n) is also a rational number (probably y = t
2n±1 , (t, 2

n ± 1) = 1),
respectively.

Theorem 2.1. Let gw(x) :=
1
wx(4w−x) and hw(x) :=

1
w (2w−x)2, where w ∈ C\{0}.

Then we have gw([0, 4w]) = [0, 4w] and hw([0, 4w]) = [0, 4w], for every w ∈ C, and
the following identities hold
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gw(w s2(x)) = w s2(2x), (2)

hw(w c2(x)) = w c2(2x). (3)

In the sequel, from these relations we deduce that sets

{w s2(α), w s2(2α), w s2(4α)} and {w s2(β), w s2(2β), w s2(4β)}

are the 3-periodic orbits of gw and that sets

{w c2(α), w c2(2α), w c2(4α)} and {w c2(β), w c2(2β), w c2(4β)}

are the 3-periodic orbits of hw. In both cases these are the unique 3−periodic orbits
of these functions.

Hence, from Sharkovsky’s Theorem [3,5,6,15,19] we obtain that gw and hw possess
the periodic orbits of any finite cardinality.

We note that the given above sets are the only possible 3-periodic orbits of gw and
hw, respectively. Moreover, numbers 0 and 3w are the only fixed points of gw(x),
whereas numbers w and 4w are the only fixed points of hw(x), sets

{w s2
(

2k
π

5

)

: k = 0, 1} = {w
(

5−
√
5

2

)

, w

(

5 +
√
5

2

)

}

and

{w c2
(

2k
π

5

)

: k = 0, 1} = {w
(√

5− 1

2

)2

, w

(√
5 + 1

2

)2

}

are the only 2-periodic orbits of gw and hw, respectively (we note that
√
5 c
(

2k π
5

)

=

s2
(

2k+1 π
5

)

for every k = 0, 1), sets

{w s2(2kγ) : k = 0, 1, . . . , 4} and {w c2(2kγ) : k = 0, 1, . . . , 4}

are the 5-periodic orbits of gw and hw, respectively (remaining 5-periodic orbits of hw

are presented in Remark 2.4), sets

{w s2(2kδ) : k = 0, 1, . . . , 5} and {w c2(2kδ) : k = 0, 1, . . . , 5}

are the 6-periodic orbits of gw and hw, respectively, and at last, sets

{w s2(2kε) : k = 0, 1, 2, 3}=
{w

4

(

7 +
√
5±

√

6(5 +
√
5)
)

,
w

4

(

7−
√
5±

√

6(5−
√
5)
)}

and

{w c2(2kε) : k = 0, 1, 2, 3}=
{w

4

(

9 +
√
5±

√

6(5−
√
5)
)

,
w

4

(

9−
√
5±

√

6(5 +
√
5)
)}

are the 4-periodic orbits of gw and hw, respectively.
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Function gw possesses additionally two other 4-periodic orbits:

{

w s2
(

2k
π

17

)

: k = 1, 2, 3, 4
}

and
{

w s2
(

2k
3π

17

)

: k = 0, 1, 2, 3
}

(all these eight numbers for w = 1 are roots of the following polynomial

x8 − 17 x7 + 119 x6 − 442 x5 + 935 x4 − 1122 x3 + 714 x2 − 204 x+ 17).

Similarly, function hw possesses as well two other 4-periodic orbits:

{

w c2
(

2k
π

17

)

: k = 1, 2, 3, 4
}

and
{

w c2
(

2k
3π

17

)

: k = 0, 1, 2, 3
}

(all these eight numbers for w = 1 form the set of zeros of polynomial

x8 − 15 x7 + 91 x6 − 286 x5 + 495 x4 − 462 x3 + 210 x2 − 36 x+ 1).

Proof. Proof of the second part of theorem results from equalities

s2(8α) = s2(α) and s2(8β) = s2(β)

(we note that

s2(γ)
gw→ s2(2γ)

gw→ s2(4γ)
gw→ s2(3γ)

gw→ s2(5γ)
gw→ s2(γ),

c2(ε)
hw→ c2(2ε)

hw→ c2(4ε)
hw→ c2(7ε)

hw→ c2(ε).

etc.) and from the following decompositions

g1 ◦ g1 ◦ g1(x) − x = −x (x− 3) ps2(x) qs2(x),

h1 ◦ h1 ◦ h1(x) − x = (x− 1) (x− 4) pc2(x) qc2(x),

since we have
gw ◦ gw ◦ gw(w x) = w g1 ◦ g1 ◦ g1(x)

and
hw ◦ hw ◦ hw(wx) = wh1 ◦ h1 ◦ h1(x).

⊓⊔

Corollary 2.2. For every positive integer n ≥ 3 both gw and hw possess the
n−periodic square trigonometric orbits of the form

{s2
(

2k
π

2n + 1

)

: k = 0, 1, ..., n− 1},

{s2
(

2k
π

2n − 1

)

: k = 0, 1, ..., n− 1}

and

{c2
(

2k
π

2n + 1

)

: k = 0, 1, ..., n− 1},
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{c2
(

2k
π

2n − 1

)

: k = 0, 1, ..., n− 1},

respectively. Certainly, these functions may possess also the other n-periodic square
trigonometric orbits which is especially interestingly exhibited in Remark 2.4.

Remark 2.3. Both maps gw
∣

∣

[0,4w]
and hw

∣

∣

[0,4w]
are transitive. It follows easily from

the facts that both sequences
{

w s2
(

2nxπ
)}∞

n=0
and

{

w c2
(

2nxπ
)}∞

n=0
are dense in

[0, 4w] for almost all x ∈ R. It is a consequence of uniform distribution of the sequence
{

2nx
}∞
n=0

for almost all x ∈ R [12].

Remark 2.4. Polynomial h1(x) (and in consequence every hw(x)) possesses addi-
tionally five other 5-periodic orbits:
– the first one:

x1 = c2
( π

33

)

= 3.96386
h1−→ x2 = c2

(2π

33

)

= 3.85674
h1−→ x3 = c2

(4π

33

)

= 3.447483

h1−→ x4 = c2
(8π

33

)

= 2.09516
h1−→ x5 = s2

( π

66

)

= 0.00905615,

– the second one:

x1 = c2
(5π

33

)

= 3.16011
h1−→ x2 = c2

(10π

33

)

= 1.34586
h1−→ x3 = c2

(13π

33

)

= 0.427894

h1−→ x4 = c2
(7π

33

)

= 2.47152
h1−→ x5 = s2

(5π

66

)

= 0.222329,

– the third one:

x1 = c2
( π

31

)

= 3.95906
h1−→ x2 = c2

(2π

31

)

= 3.83792
h1−→ x3 = c2

(4π

31

)

= 3.37793

h1−→ x4 = c2
(8π

31

)

= 1.8987
h1−→ x5 = s2

( π

62

)

= 0.0102614,

– the fourth one:

x1 = c2
(3π

31

)

= 3.64153
h1−→ x2 = c2

(6π

31

)

= 2.69461
h1−→ x3 = s2

(7π

62

)

= 0.482484

h1−→ x4 = c2
(7π

31

)

= 2.30286
h1−→ x5 = s2

(3π

62

)

= 0.0917215,

– the fifth one:

x1 = c2
(5π

31

)

= 3.05793
h1−→ x2 = c2

(10π

31

)

= 1.11921
h1−→ x3 = s2

(9π

62

)

= 0.775788

h1−→ x4 = c2
(9π

31

)

= 1.49869
h1−→ x5 = s2

(5π

62

)

= 0.251307.

Elements of the first and second orbit are zeros of polynomial

x10 − 21 x9 + 188 x8 − 934 x7 + 2806 x6 − 5202 x5 +

+ 5809 x4 − 3629 x3 + 1090 x2 − 120 x+ 1,
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Table 1
Orbits of g1 including sin2

(

π

n

)

for successive odd n > 3, where l := min{k ∈

N : sin2
(

2k π

n

)

= sin2
(

π

n

)

} denotes the length of every orbit and N := ⌊n

l
⌋

denotes the number of remaining orbits of g1 generated by sin2
(

rπ

n

)

, (r, n) = 1

n l N the orbit of g1 including sin2
(

π

n

)

3 1 3
{

3

4

}

5 2 2
{

5

8
−

√

5

8
, 5

8
+

√

5

8

}

7 3 2
{

sin2
(

π

7

)

, cos2
(

3π

14

)

, cos2
(

π

14

)}

9 3 3
{

sin2
(

π

9

)

, sin2
(

2π

9

)

, cos2
(

π

18

)}

11 5 2
{

sin2
(

π

11

)

, sin2
(

2π

11

)

, cos2
(

3π

22

)

, cos2
(

5π

22

)

, cos2
(

π

22

)}

13 6 2
{

sin2
(

π

13

)

, sin2
(

2π

13

)

, cos2
(

5π

26

)

, cos2
(

3π

26

)

, sin2
(

3π

13

)

, cos2
(

π

26

)}

15 4 3
{

sin2
(

π

15

)

, sin2
(

2π

15

)

, cos2
(

7π

30

)

, cos2
(

π

30

)}

17 4 4
{

sin2
(

π

17

)

, sin2
(

2π

17

)

, sin2
(

4π

17

)

, cos2
(

π

34

)}

19 9 2
{

sin2
(

π

19

)

, sin2
(

2π

19

)

, sin2
(

4π

19

)

, cos2
(

3π

38

)

, sin2
(

3π

19

)

, cos2
(

7π

38

)

,

cos2
(

5π

38

)

, cos2
(

9π

38

)

, cos2
(

π

38

)}

21 6 3
{

sin2
(

π

21

)

, sin2
(

2π

21

)

, sin2
(

4π

21

)

, cos2
(

5π

42

)

, sin2
(

5π

21

)

, cos2
(

π

42

)}

23 11 2
{

sin2
(

π

23

)

, sin2
(

2π

23

)

, sin2
(

4π

23

)

, cos2
(

7π

46

)

, cos2
(

9π

46

)

, cos2
(

5π

46

)

,

sin2
(

5π

23

)

, cos2
(

3π

46

)

, sin2
(

3π

23

)

, cos2
(

11π

46

)

, cos2
(

π

46

)}

25 10 2
{

sin2
(

π

25

)

, sin2
(

2π

25

)

, sin2
(

4π

25

)

, cos2
(

9π

50

)

, cos2
(

7π

50

)

, cos2
(

11π

50

)

,

cos2
(

3π

50

)

, sin2
(

3π

25

)

, sin2
(

6π

25

)

, cos2
(

π

50

)}

27 9 3
{

sin2
(

π

27

)

, sin2
(

2π

27

)

, sin2
(

4π

27

)

, cos2
(

11π

54

)

, cos2
(

5π

54

)

, sin2
(

5π

27

)

,

cos2
(

7π

54

)

, cos2
(

13π

54

)

, cos2
(

π

54

)}

29 14 2
{

sin2
(

π

29

)

, sin2
(

2π

29

)

, sin2
(

4π

29

)

, cos2
(

13π

58

)

, cos2
(

3π

58

)

, sin2
(

3π

29

)

,

sin2
(

6π

29

)

, cos2
(

5π

58

)

, sin2
(

5π

29

)

, cos2
(

9π

58

)

, cos2
(

11π

58

)

, cos2
(

7π

58

)

,

sin2
(

7π

29

)

, cos2
(

π

58

)}

31 5 6
{

sin2
(

π

31

)

, sin2
(

2π

31

)

, sin2
(

4π

31

)

, cos2
(

15π

62

)

, cos2
(

π

62

)}

33 5 6
{

sin2
(

π

33

)

, sin2
(

2π

33

)

, sin2
(

4π

33

)

, sin2
(

8π

33

)

, cos2
(

π

66

)}

35 12 2
{

sin2
(

π

35

)

, sin2
(

2π

35

)

, sin2
(

4π

35

)

, sin2
(

8π

35

)

, cos2
(

3π

70

)

, sin2
(

3π

35

)

,

sin2
(

6π

35

)

, cos2
(

11π

70

)

, cos2
(

13π

70

)

, cos2
(

9π

70

)

, cos2
(

17π

70

)

, cos2
(

π

70

)}

whereas the elements of the other three orbits are zeros of polynomial

x15 − 29 x14 + 378 x13 − 2925 x12 + 14950 x11 − 53130 x10 +

+ 134596 x9 − 245157 x8 + 319770 x7 − 293930 x6 + 184756 x5 −
− 75582 x4 + 18564 x3 − 2380 x2 + 120 x− 1.
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Properties (2) and (3) for the cubic polynomials

We give here a description of all the cubic polynomials satisfying equalities (2) and
(3) for given x = α and separately for given x = β.

Theorem 2.5. Let r(x) = x3 + a x2 + b x+ c, a, b, c ∈ C.

a) If
r
(

w s2(2kα)
)

= w s2(2k+1α), (4)

for every k = 0, 1, 2, where w ∈ C \ {0}, then

r(x) = x3 −
(

7w +
1

w

)

x2 + (14w2 + 4)x− 7w3 = w3qs2
( x

w

)

+ gw(x).

Polynomial r(x) is the only one which satisfies condition (4). Set

{w s2(α), w s2(2α), w s2(4α)}

is the 3-periodic orbit of r(x) and r(x) possesses the n-periodic orbits for every
n ∈ N.

b) If
r
(

w c2(2kα)
)

= w c2(2k+1α), (5)

for every k = 0, 1, 2, where w ∈ C \ {0}, then

r(x) = x3 +
(

− 5w +
1

w

)

x2 + (6w2 − 4)x+ 4w − w3 = w3qc2
( x

w

)

+ hw(x).

Polynomial r(x) is the only one which satisfies condition (5). Set

{w c2(α), w c2(2α), w c2(4α)}

is the 3-periodic orbit of r(x) and r(x) possesses the n-periodic orbits for every
n ∈ N.

c) If
r
(

w s2(2kβ)
)

= w s2(2k+1β), (6)

for every k = 0, 1, 2, where w ∈ C \ {0}, then

r(x) = x3 −
(

6w +
4

w

)

x2 + (4 + 9w2)x− 3w3 = w3ps2
( x

w

)

+ gw(x).

Moreover, r(x) is the only polynomial which satisfies condition (6). Set

{w s2(β), w s2(2β), w s2(4β)}

is the 3-periodic orbit of r(x) and r(x) possesses the periodic orbits of every finite
cardinality.
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d) If
r
(

w c2(2kβ)
)

= w c2(2k+1β), (7)

for every k = 0, 1, 2, where w ∈ C \ {0}, then

r(x) = x3 +
( 1

w
− 6w

)

x2 + (9w2 − 4)x+ 4w − w3 = w3pc2
( x

w

)

+ hw(x).

Polynomial r(x) is the only polynomial which satisfies condition (7). Set

{w c2(β), w c2(2β), w c2(4β)}

is the 3-periodic orbit of r(x) and r(x) possesses the periodic orbits of every finite
cardinality.

Remark 2.6. In this case we may put a question whether the reduction of conditions
(4)–(7) influences the description of polynomials r(x)?

3. New types of modified Chebyshev polynomials

Properties (2) and (3) of polynomials gw and hw lead in natural way to generating
two new types of the sequences of polynomials {Wn(x)}∞n=0 and {Vn(x)}∞n=0 defined
by conditions

Wn(c
2(x)) = c2(nx) = 4T 2

n

(c(x)

2

)

(8)

and

Vn(s
2(x)) = s2(nx) = s2(x)U2

n−1

(c(x)

2

)

, (9)

for every n ∈ N∪{0}, where Tn(x) and Un(x) denote the n-th Chebyshev polynomials
of the first and second kind, respectively. Hence we get

Wn(x
2) = 4T 2

n

(x

2

)

,

for every x ∈ R, and

Vn(x) = xU2
n−1

(

√

1− x

4

)

,

for every x ∈ (−∞, 4].
It turns out that these polynomials are closely connected with the modified Cheby-

shev polynomials Ωn(x) := 2Tn

(

x
2

)

(see [32, 38]):

Wn(x
2) = Ω2

n(x) = Ω2n(x) + 2 (10)

and
Vn(x

2) = (−1)n−1Ω2n(x) + 2, (11)

from which the following identities result
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W2n−1(t) = V2n−1(t),

W2n(t) + V2n(t) = 4

and
W 2

2n(x
2) + V 2

2n(x
2) = 2Ω2

4n(x) + 8 = 2Ω8n(x) + 12

for every t, x ∈ R. Hence we deduce

Wn(1) = Wn

(

c2
(π

3

))

= c2
(

n
π

3

)

,

Vn(1) = Vn

(

s2
(π

6

))

= s2
(

n
π

6

)

,

which implies

Vn(1) =

{

Wn(1) = c2
(

nπ
3

)

for odd n,
s2
(

n
2 · π

3

)

for even n.

Obviously one can prove inductively that (10)⇒(8) and (11)⇒(9). Let us present
the proof of implication (11)⇒(9).

Proof. From (11) we obtain

(−1)n−1Vn(s
2(x)) = Ω2n(s(x)) + 2(−1)n−1 = 2T2n(sinx) + 2(−1)n−1 =

= 2 cos
(

2n
(π

2
− x
)

)

+ 2(−1)n−1 = 2(−1)n cos(2nx) + 2(−1)n−1 =

= 2(−1)n(1− 2 sin2(nx)) + 2(−1)n−1 = (−1)n−1s2(nx)

which implies (9). ⊓⊔

We know that [32]:
Ωn(θ + θ−1) = θn + θ−n,

for every θ ∈ C \ {0}, which implies two interesting relations

Wn

(

(θ + θ−1)2
) (10)

= (θn + θ−n)2 (12)

and

Vn

(

(θ + θ−1)2
) (11)

= (−1)n−1(θn − (−θ)−n)2. (13)

Moreover, the following decompositions are proven in paper [32]:

Ω2n−1(x) −Ω2n−1(θ + θ−1) =

2n−2
∏

k=0

(

x− θ ξ2k − θ−1ξ−2k
)

, (14)

where ξ := exp(i π/(2n− 1)), and

(−1)nΩ2n(i x) +Ω2n(θ + θ−1) =

2n−1
∏

k=0

(

x− θ ζ2k+1 + θ−1ζ−2k−1
)

, (15)

where ζ := exp(i π/(2n)). It implies, among others, that
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(−1)n
(

Wn(−x2)−Wn

(

(θ + θ−1)2
)

)

= (−1)n
(

Ω2n(i x)− θ2n − θ−2n
)

=

= (−1)nΩ2n(i x)− (i θ)2n − (i θ)−2n = (−1)nΩ2n(i x) + (i ζθ)2n + (i ζθ)−2n =

=
2n−1
∏

k=0

(

x− i
(

θζ2k+2 + θ−1ζ−2k−2
)

)

, (16)

or in “positive” version (x 7→ i x):

Wn(x
2)−Wn

(

(θ + θ−1)2
)

=

2n−1
∏

k=0

(

x− θζ2k+2 − θ−1ζ−2k−2
)

. (17)

Similarly we determine

− Vn(−x2) + Vn

(

(θ + θ−1)2
)

= (−1)nΩ2n(i x)− (−1)nΩ2n(θ + θ−1) =

= (−1)nΩ2n(i x)− (−1)n(θ2n + θ−2n) = (−1)nΩ2n(i x) + (i ζθ)2n + (i ζθ)−2n =

=

2n−1
∏

k=0

(

x− i θζ2k+2 − i θ−1ζ−2k−2
)

. (18)

Recurrence relations for polynomials Wn and Vn

The following recurrence relation for Ωn(x) holds (see [30, 32]):

Ωn+2(x) = xΩn+1(x) −Ωn(x)

which implies the two steps recurrence relation [14]:

Ωn+4(x) = (x2 − 2)Ωn+2(x) −Ωn(x). (19)

Hence we deduce that

Ω2(n+2)(x) + 2 = (x2 − 2)(Ω2(n+1)(x) + 2)− (Ω2n(x) + 2)− 2 x2 + 8,

i.e., by (10),
Wn+2(t) = (t− 2)Wn+1(t)−Wn(t)− 2 t+ 8 (20)

which is the recurrence relation for Wn(t). The first eleven polynomials Wn are pre-
sented in Table 2.

Similarly, from (19) one can conclude the relation

Ω2(n+2) + 2(−1)n+1 = (x2 − 2)(Ω2(n+1)(x) + 2(−1)n)−
− (Ω2n(x) + 2(−1)n−1)− 2(−1)nx2,

which generates the recurrence relation for Vn(t):

(−1)n+1Vn+2(t) = (t− 2)(−1)nVn+1(t)− (−1)n−1Vn(t)− 2 t (−1)n,
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Table 2
Polynomials Wn

n Wn(t)

0 4

1 t

2 4 − 4t + t2

3 9t− 6t2 + t3

4 4 − 16t + 20t2 − 8t3 + t4

5 25t− 50t2 + 35t3 − 10t4 + t5

6 4 − 36t + 105t2 − 112t3 + 54t4 − 12t5 + t6

7 49t− 196t2 + 294t3 − 210t4 + 77t5 − 14t6 + t7

8 4 − 64t + 336t2 − 672t3 + 660t4 − 352t5 + 104t6 − 16t7 + t8

9 81t− 540t2 + 1386t3 − 1782t4 + 1287t5 − 546t6 + 135t7 − 18t8 + t9

10 4 − 100t + 825t2 − 2640t3 + 4290t4 − 4004t5 + 2275t6 − 800t7 + 170t8 − 20t9 + t10

Table 3
Polynomials Vn

n Vn(t)

0 0

1 t

2 4t− t2

3 9t− 6t2 + t3

4 16t − 20t2 + 8t3 − t4

5 25t − 50t2 + 35t3 − 10t4 + t5

6 36t − 105t2 + 112t3 − 54t4 + 12t5 − t6

7 49t − 196t2 + 294t3 − 210t4 + 77t5 − 14t6 + t7

8 64t − 336t2 + 672t3 − 660t4 + 352t5 − 104t6 + 16t7 − t8

9 81t − 540t2 + 1386t3 − 1782t4 + 1287t5 − 546t6 + 135t7 − 18t8 + t9

10 100t − 825t2 + 2640t3 − 4290t4 + 4004t5 − 2275t6 + 800t7 − 170t8 + 20t9 − t10

i.e.,
Vn+2(t) = (2− t)Vn+1(t)− Vn(t) + 2 t. (21)

The first eleven polynomials Vn are given in Table 3.
Let us also notice that polynomials Wn(t) and Vn(t) satisfy many identities of

trigonometric nature compatible with the respective identities of standard trigonom-
etry. For example, the following one’s hold
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Wn(c
2(x)) + Vn(s

2(x)) = 4,

Wn(c
2(x))Vn(s

2(x)) = V2n(s
2(x)),

(Wn(c
2(x)))2 + (Vn(s

2(x)))2 = 1− 2V2n(s
2(x)),

Vn(s
2(x))

N
∏

k=0

W2kn(c
2(x)) = V2N+1n(s

2(x)).

In particular, we obtain from this the following interesting numerical relations

lim
x→0+

V2N+1n(x)

Vn(x)
=

N
∏

k=0

W2kn(1),

Vn(2)

N
∏

k=0

W2kn(2) = V2N+1n(2),

Wn(2) + Vn(2) = 4,

2V2n(2) = 1− (Wn(2))
2 − (Vn(2))

2,

Wn(0) + Vn(1) = Wn(1) + Vn(0) = 4,

which implies

Vn(0) = 4−Wn(1) = s2
(

n
π

3

)

,

Wn(0) = 4− Vn(1) =

{

s2
(

nπ
3

)

for odd n,
c2
(

nπ
6

)

for even n,

lim
x→0+

V2N+1n(x)

Vn(x)
=

N
∏

k=0

c2
(

2kn
π

3

)

=
(

sin
(

2N+1n
π

3

)

/ sin
(

n
π

3

)

)2

.

Moreover, we get

Wn(2) = Wn

(

c2
(π

4

))

= c2
(

n
π

4

)

= 2 + ((−1)n + 1)(−1)⌈n/2⌉,

Vn(2) = Vn

(

s2
(π

4

))

= s2
(

n
π

4

)

= 2− ((−1)n + 1)(−1)⌈n/2⌉,

Wn(3) = Wn

(

c2
(π

6

))

= c2
(

n
π

6

)

,

Vn(3) = Vn

(

s2
(π

3

))

= s2
(

n
π

3

)

,

which implies

Wn(3) = 1− Vn(1), Vn(3) = 1−Wn(1),

Wn(4) = Wn

(

c2(0)
)

= 4,

Vn(4) = Vn

(

s2
(π

2

))

= s2
(

n
π

2

)

=

{

0 for even n,
4 for odd n,

and so on. Simultaneously, from (12) we can deduce that
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Wn(5) = L2n + 2,

where Ln denote the n-th Lucas number, since

θ + θ−1 =
√
5 ⇐⇒ θ1 =

√
5 + 1

2
or θ2 =

√
5− 1

2

and by Binet’s formula for Ln we have

θ2ni + θ−2n
i = L2n,

for every i = 1, 2, and n ∈ N.
Generally we get

Wn(4k) =
(
√
k +

√
k − 1

)2n
+ 2 +

(
√
k −

√
k − 1

)−2n

for k ∈ C, which implies

Wn

(

4
c2

b2

)

=
(c+ a

b

)2n

+ 2 +
(c− a

b

)−2n

for a, b, c ∈ C, b 6= 0, and a2 + b2 = c2. For example, we obtain

Wn

((13

6

)2 )

=
(

5n + 5−n
)2

and

Wn

((26

5

)2 )

=
((3

2

)n

+
(2

3

)n )2

,

whenever a = 5, b = 12, c = 13.
At last, let us observe that if

(

√
5 + 1

2

)2k

=
ak + bk

√
5

2
, ak, bk, k ∈ N,

then
Wn

(

a2k
)

= L2kn + 2.

For example, Wn(9) = L4n + 2, Wn(49) = L8n + 2, Wn(2209) = L16n + 2.

Proof. If
(

√
5+1
2

)2k

= ak+bk
√
5

2 then ak, bk ∈ 2N − 1 and
(

√
5−1
2

)2k

= ak−bk
√
5

2 . It

implies a2k − 5 b2k = 4 and θ2 − ak θ + 1 = 0 which is equivalent to θ = ak±bk
√
5

2 . ⊓⊔

We note also that from (17) we obtain

Wn(0)−Wn

(

(θ + θ−1)2
)

=
2n
∏

k=1

(

θζ2k + θ−1ζ−2k
)

.
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Remark 3.1. From relations (8) and (9) it follows that polynomials Vn(x), n ∈
N ∪ {0}, and separately Wn(x), n ∈ N ∪ {0}, are not orthogonal on any nontrivial
interval I ⊂ R.

However, from (10) and (11) we deduce the following orthogonal relations

2
∫

−2

(

Wm(x2)− 2
)(

Wn(x
2)− 2

)

(4 − x2)−1/2dx = Nmδm,n

with N0 = 4π and Nm = 2π if m 6= 0, and

2
∫

−2

(

Vm(x2)− 2
)(

Vn(x
2)− 2

)

(4− x2)−1/2dx = (−1)m+nNmδm,n.

More properties of these polynomials, as well as their new applications, we intend to
discuss in a separate paper.

Remark 3.2. (of conceptional nature) Next generalizations of the Chebyshev
polynomials, from among many known ones (see [2]) together with the one discussed in
the current paper, led us to one more kind of questions concerning the generalizations
of these polynomials, this time to the real indices (and even the complex indices). For
example

Tξ(cos x) = cos(ξ x), x ∈ R, ξ > 0.

We note that after simple algebra we get then the following differential equation

(1 − t2)T ′′
ξ (t)− t T ′

ξ(t) + ξ2Tξ(t) = 0.

The idea of proposing that kind of generalization can arise from the connection
of polynomial Tn(x) with the hypergeometric functions and next with their integral
representation (the latter is not necessary, however it enables to analyse better this
generalization). Thus we have (see [1, 18]):

Tn(x) =2F1

(

− n, n;
1

2
;
1− x

2

)

,

for every x ∈ C, and

2F1(α, β; γ;x) =
Γ (γ)

Γ (β)Γ (γ − β)

1
∫

0

tβ−1(1 − t)γ−β−1(1− t x)−αdt,

for x, α, β, γ ∈ C, | arg(1−x)| < π and Re(γ) > Re(β) > 0. By this facts we may take

Tξ(x) := 2F1

(

− ξ, ξ;
1

2
;
1− x

2

)

,

for every x ∈ C satisfying condition
∣

∣

∣

1−x
2

∣

∣

∣
< 1, and even
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Tξ,ζ(x) := 2F1

(

− ξ, ζ;
1

2
;
1− x

2

)

,

for ξ, ζ ∈ C, Re(ξ) > 0, 1
2 > Re(ζ) > 0,

∣

∣

∣
arg
(

1+x
2

)
∣

∣

∣
< π.

Another source of possible generalization of the Chebyshev polynomials can be
found in the inspiring paper [27]. For example, starting from identity

Tn(θ + θ−1) = θn + θ−n,

for θ ∈ C \ {0}, we can take either the first hyperbolic cosine formula

Tξ(x) = x
(

1 +

∞
∑

n=1

(x2 − 1)n

(2n)!

n
∏

k=1

(ξ2 − (2k − 1)2)
)

,

or the second hyperbolic cosine formula

Tξ(x) = 1 + ξ2(x2 − 1)
(

1 + 2

∞
∑

n=1

(2(x− 1))n

(2n+ 2)!

n
∏

k=1

(ξ2 − k2)
)

.

Both formulae are compatible with our hypergeometric ones.
Some other type of generalization of the Chebyshev polynomials is discussed in [2]

(see also [8]).
In the similar manner, i.e. by applying the hypergeometric function, the other

classical orthogonal polynomials can also be generalized, for example the Legendre
polynomials (see [16], page 56):

Pξ(x) := 2F1

(

− ξ, ξ + 1; 1;
1

2
− 1

2
x
)

,

for −1 6 x 6 1, which generates the excellent connections with the classical Legendre
polynomials

Pξ(x) =
sin ξπ

π

∞
∑

n=0

(−1)n
[ 1

ξ − n
− 1

ξ + n+ 1

]

Pn(x),

for ξ ∈ R \ Z, x ∈ (−1, 1], and

Pξ(cos θ)Pξ(cos θ
′) =

sin ξπ

π

∞
∑

n=0

(−1)n
[ 1

ξ − n
− 1

ξ + n+ 1

]

Pn(cos θ)Pn(cos θ
′).
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